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1 Introduction

We present a new graphical debugging framework, Kahina, for logic programming and demonstrate
two of its key features by applying it to debugging HPSG grammars in TRALE (Penn et al., 2003).
Debugging TRALE grammars, such as those presented in the textbook by Müller (2007), that stay
true to their declarative specification in HPSG is a particularly challenging logic programming task,
due to the size and complexity of these grammars. Kahina visualizes the structure of the parse pro-
cess as a tree and relates each action to the grammar’s source code, making it possible to maintain
an overview over a large number of steps. The debugger lets users inspect each parse step with its
complete context (variable bindings, executed constraints on feature structures, and effects of proce-
dural attachments), thereby providing all information necessary to understand complex interactions
of different grammar components that are otherwise very hard to discern. A novel and versatile
breakpoint system based on tree automata permits precise searches for specific events during parsing.

2 Kahina as a Graphical Debugging Framework for Logic

Programming

Graphical debugging in logic programming dates back to the 1980s and early 1990s (Dewar and
Cleary, 1986; Rajan, 1986; Eisenstadt et al., 1991), with early systems focusing on teaching Prolog’s
execution model using small toy programs. One of the few freely available mature tools of today,
SWI-Prolog’s GUI tracer (Wielemaker, 2003), is restricted to displaying the current call stack at each
point of execution without facilities for graphical post-mortem analysis. In recent years, interest has
shifted to comparable tools for the more complex case of constraint logic programming, leading to the
development of systems such as CLPGUI (Fages et al., 2004). The goal of the Kahina framework is to
fill the gap of a technologically up-to-date graphical debugging framework for the logic programming
paradigm, with large-scale symbolic grammar development as its initial target application.

In Kahina’s modular architecture (Fig. 1) communication between a logic programming system
and the core debugging system is implemented by a bridge. The bridge translates tracer output
and other data provided by the logic program into Kahina’s internal format, hands back control
information to the logic program and defines application-specific data-types, such as TRALE’s feature
structures, as well as specialized view components to display them.

The view components currently available for TRALE are a source display, a feature structure
display, a chart display and variable watching. While each of them only shows the respective details
of one step at a time, any step can be selected at any time since Kahina stores the complete execution



Figure 1: Architecture of a debugging system using the Kahina framework

history. This makes it possible to check for nonlocal effects arising from the interaction of complex
constraints, edges on the parse chart, and logic programs attached to grammar rules or constraints.

Understanding and navigating complete execution histories is supported by two components with
major innovations: a tree visualization of the execution space and a novel breakpoint system. In the
remainder of this paper we focus on these two components and their application to TRALE.

3 Visualizing Parsing Processes Using Kahina

TRALE’s parser follows the procedural box model (Byrd, 1980), breaking the parsing process down
into meaningful units called steps. We conceptualize the execution space of a parsing process as a tree
in which each node represents a step. Within the execution of procedural attachments and functional
descriptions, steps closely correspond to invocations of ALE procedures and clauses. Elsewhere
TRALE defines its own set of step types for actions such as (a) applying descriptions to feature
structures (unification, adding types, feature selection) and (b) parsing (applying a rule, or closing
an edge under rule application). Each tree node is labeled with the numeric ID and the type of
the corresponding step. Each step can be selected by clicking on the corresponding node, thereby
changing the contents of all relevant view components.

Parsing even a short sentence can easily comprise several thousand steps. Although conceptually
all steps are part of a single tree, this huge tree would hardly be navigable. Our strategy to overcome
this problem is to break down the whole tree into manageable pieces that represent meaningful units
of execution. At the highest level, the graphical debugger splits it into two trees, an overview tree

and a detail tree. The overview tree is a thinned-out version of the complete tree, eliminating all
nodes except the “cornerstones” of a parsing process, viz. rule applications and closing edges under
rule applications. By selecting individual cornerstone nodes, the user controls which part of the
tree is shown as detail tree. The detail tree contains only the descendants of the currently selected
cornerstone node, and only down to any lower cornerstone nodes, which become leaves.

Another challenge besides the size of execution spaces of logic programs is their complex structure.
There are at least two tree structures in which the steps could be arranged, and which are both
meaningful and important. The search tree shows the effects of backtracking. Without backtracking,
a search tree is a long unary branch in which each step is a child of the step that was last invoked
before it. On backtracking, the step that is the last active choicepoint is copied to represent the
new invocation. The copy becomes a sibling of the original, creating a new branch. The call tree

corresponds more closely to the logic program itself. The descendants of each step are those which are
invoked in the course of its execution. In Prolog terminology, the children of a goal are its subgoals.

Kahina integrates the search tree and the call tree into one visualization by giving the tree diagrams
in the graphical debugger a macrostructure and a microstructure (see Fig. 2). The macrostructure
is the search tree. Here, the vertical visual axis shows the order in which steps are invoked within



Figure 2: An ALE procedure for appending lists and a fragment of a detail tree showing its application
to two lists with one element each. Steps in dark gray have failed, steps in light gray have successfully
exited. The descendants of step 65 are not shown. The second copy of step 14 (on the right) is being
redone and about to fail since a substep (27) has failed.

one branch. The horizontal axis places alternative branches next to each other, arranged from left to
right in chronological order. Thus, the order of step invocations can be read off the diagram by doing
an intuitive preorder traversal of the macrostructure. The microstructure of the detail tree uses the
horizontal axis in another way: Node indentation and edgy lines connecting steps to their substeps
represent the call tree. This layout results in a very transparent visualization as it corresponds closely
to the way the head and body of clauses in Prolog and TRALE are usually formatted.

4 Breakpoints

Like a classical Prolog tracer, Kahina offers four basic commands for stepping through the execution
of a logic program, or a parsing process: creep completes the current step or advances to the next
step, fail allows to shortcut the execution of a step which will fail anyway or to explore otherwise
inaccessible parts of the search space, skip automatically completes the current step without showing
substeps (but stores them for later inspection), and leap advances execution to the next step where
a certain condition, defined by the user in advance and called a breakpoint, holds.

In a classical Prolog tracer (e.g. Carlsson et al. (2009)), breakpoints are defined using various spe-
cialized types of breakpoint conditions such as unifiability of the current goal with a given term. Such
tracers maximally have access to the backtrace, which does not include information from previously
failed branches. This can be a severe limitation especially in environments such as TRALE’s parser,



Figure 3: Prototype version of the breakpoint editor; the user is interested in a call of type unify

which was caused by another call of type unify after step 10.

which makes heavy use of failure-driven loops and dynamic predicates.
Kahina’s very general approach to defining breakpoints draws on the tree model of the execution

space described in the previous section, which includes all information even about failed branches.
In Kahina, breakpoints are arbitrary patterns on the two-dimensional step-tree structure. They are
not restricted to being used with the leap command during execution, but also function as search
patterns on completed trees after execution.

The added conciseness and expressive power of Kahina’s extended breakpoint definitions has many
advantages. Not every instance of arriving at a given source code location may be of interest, but
only situations in which arriving there is the result of some particular predicate call which also caused
a certain other goal to be evaluated. To capture such patterns, Kahina’s breakpoint mechanism can
define a tree fragment consisting of three source code matches, and the breakpoint will then only be
lept to if arriving at the three locations was related in the way specified in the tree fragment.

Kahina comes with an intuitive graphical breakpoint editor for defining tree fragment patterns.
The definition of simple patterns does not require a full understanding of the underlying formalism
and can be achieved with a few mouse clicks and key strokes. Templates make defining certain
very common types of patterns even easier. To help non-specialists, the breakpoint editor comprises
a testing environment in which new users can check the effect of their breakpoints. In essence, the
testing environment is a tree editor which mimics the construction of a step tree, enhanced by facilities
for randomly generating large trees. Any number of breakpoints may be tested in parallel. Fig. 3
illustrates important functions of the breakpoint editor.

Internally, the tree fragment patterns are compiled into a variant of non-deterministic bottom-up
tree automata that is specialized for efficient pattern matching in dynamically changing trees. We
chose tree automata for this purpose because they constitute a well-understood and efficient formalism
for pattern matching in trees, equivalent to regular expressions and finite automata in the domain
of string pattern matching (see Comon et al. (2007) for a thorough introduction). A breakpoint tree

automaton monitors a tree structure of Kahina steps by assigning states to the tree’s leaves and then



4 unify {q1}

5 comp clause 7 comp clause

8 featval(arg3:hd)

9 goal(append/3)

10 unify(T1) {q1}

11 unify(L) {q1 , q0} match

12 unify(T2) {q1}

6 comp clause

Automaton definition:
States : {q0, q1}
Final States : {q0}
Rules : {({}, label = unify.∗) → q1,

({q1}, label = unify.∗ ∧ id > 10) → q0}

Figure 4: Adapting annotations after adding a new node

deducing, via a transition function, the set of states for each tree node from its label and the set of
its child nodes’ states. It is important to note that the transition rules have a subset semantics for
child node states, i.e. a rule applies if the set of states given on the left-hand side of the rule is a
subset of the union of the sets of states for its child nodes. Various customizable ways of defining
whether a node symbol matches a rule are available, e.g. regular expressions on node labels and
numeric constraints on node IDs.

A node matches the breakpoint defined by a breakpoint automaton as soon as recursive application
of the transition function annotates it with one of the final states. This behavior differs from the
usual definition of a tree automaton in that it does not only accept matches at the root node. Instead
it detects the occurrence of a tree pattern in a tree, and a node recognized to match the breakpoint
corresponds to the root of the tree pattern. Similar ideas were first proposed by Neumann and Seidl
(1998) in the context of detecting matching subtrees in a single traversal of a static forest.

If we conceive of the states of the automaton at a given tree node as annotations, the updating
process necessary after a change to the tree could be called a reannotation. Essentially, processing
the addition of, or a change to, a tree node only requires the (re)annotation of the node itself, with
subsequent recursive reannotation of its ancestor nodes. The process terminates once the root is
reached or when reannotating a node does not change the set of its annotations. Fig. 4 shows what
happens internally after the last update process that leads to the match during the breakpoint test in
Fig. 3. The gray part of the tree represents the situation before the new node with label unify(T2)
was added, the result of the reannotation process is highlighted in black.

5 Conclusion

Kahina is a graphical debugging framework that can be of great help in handling complex logic pro-
gramming tasks like the implementation of HPSG grammars in TRALE. Its graphical viewers support
grammar developers in one of their hardest tasks, systematically tracking bugs and inefficiencies in
grammars. The intuitive and detailed visualization considerably eases the memory burden involved
in keeping track of huge parsing processes, including intricate interactions between rules, constraint
applications, and suspended goals in co-routining.

Tree automata as a formalism for the breakpoint system add a powerful pattern matching mecha-
nism on call structures to the grammar developer’s toolbox for quick and efficient exploration of large
parsing processes. The analysis can even be conducted post-mortem, since all potentially relevant



details of the parsing process are stored in a data base for later retrieval and inspection.
The innovations introduced by Kahina thus offer new solutions to challenges that can make debug-

ging grammars very time-consuming, and, in certain situations and without appropriate high-level
tools, practically impossible. Future enhancements of the system will include profiling facilities and
gradual evolution towards an integrated development environment for debugging TRALE and other
constraint-based parsing systems.
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